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Abstract The research field of animal and plant symbioses
is advancing from studying interactions between two spe-
cies to whole communities of associates. High-throughput
sequencing of microbial communities supports multiplexed
sampling for statistically robust tests of hypotheses about
symbiotic associations. We focus on ambrosia beetles, the
increasingly damaging insects primarily associated with
fungal symbionts, which have also been reported to support
bacteria. To analyze the diversity, composition, and speci-
ficity of the beetles’ prokaryotic associates, we combine
global sampling, insect anatomy, 454 sequencing of bacte-
rial rDNA, and multivariate statistics to analyze prokaryotic
communities in ambrosia beetle mycangia, organs mostly
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known for transporting symbiotic fungi. We analyze six
beetle species that represent three types of mycangia and
include several globally distributed species, some with
major economic importance (Dendroctonus frontalis, Xyle-
borus affinis, Xvleborus bispinatus—ferrugineus, Xyleborus
glabratus, Xylosandrus crassiusculus, and Xylosandrus ger-
manus). Ninety-six beetle mycangia yielded 1,546 bacterial
phylotypes. Several phylotypes appear to form the core
microbiome of the mycangium. Three Mycoplasma (origi-
nally thought restricted to vertebrates), two Burkholderiales,
and two Pseudomonadales are repeatedly present worldwide
in multiple beetle species. However, no bacterial phylotypes
were universally present, suggesting that ambrosia beetles
are not obligately dependent on bacterial symbionts. The
composition of bacterial communities is structured by the
host beetle species more than by the locality of origin, which
suggests that more bacteria are vertically transmitted than
acquired from the environment. The invasive X. glabratus
and the globally distributed X. crassiusculus have unique
sets of bacteria, different from species native to North
America. We conclude that the mycangium hosts in multiple
vertically transmitted bacteria such as Mycoplasma, most of
which are likely facultative commensals or parasites.

Introduction

The study of symbioses, whether between humans and their
microbiome or insects and their symbionts, has begun to see
a shift from research focusing on pairs of species toward the
study of symbiotic communities. This is in part because new
methods of environmental DNA sampling are revealing
many previously unnoticed bacterial and fungal associates.
In some symbiotic communities, both coevolved symbionts
and incidental associates may play important but different
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roles. One such example is the ambrosia symbiosis between
wood-boring beetles and diverse fungal and microbial asso-
ciates. The beetles are often cited as a textbook example of
tree disease vectors [1], yet in some cases, the disease agents
may be incidental opportunists, rather than the primary
symbionts of the beetles [2, 3]. Such complexity of inter-
actions highlights the need to survey the full diversity of
microbial associates of ambrosia beetles. Historically, stud-
ies of the ambrosia symbiosis have focused on insect inter-
actions with the main fungal symbiont, and few addressed
the role of other fungi, and even fewer studies exist on the
presence and role of bacteria in this system. Here, we
expand the focus of ambrosia symbiosis research to address
the prokaryotic component. We combine the approaches of
culture-independent microbiology, insect anatomy, and mul-
tivariate statistics to analyze bacterial communities inside
one of the most frequently evolved organs mediating a
symbiosis—the mycangia of ambrosia beetles.

The ambrosia symbiosis of beetles and fungi is one of the
most evolutionarily successful and ecologically important
insect mutualisms [4], with increasing global economic
impact [3]. The symbiosis evolved in at least 11 independent
bark beetle ancestors (Curculionidae, Scolytinae, and Platy-
podinae) and involves over 3,500 beetle species and an
unknown but large number of symbiotic wood-decay fungi
[4-6, 42, 43]. The fungi are carried in specialized membranous
invaginations equipped with secretory glands—mycangia [7,
8]. As most of the research on ambrosia symbiosis focused on
mycangial fungi, little is known about bacteria in mycangia.
Even the question of whether bacteria are present in beetle
mycangia is poorly resolved, and whether the bacterial com-
munity is shaped by the type of mycangium, beetle evolution-
ary origin, or geographic origin has never been tested.

Presence of bacteria in mycangia has been suggested by
previous studies [12, 16, 18], but not explicitly tested, as
bacterial associates of beetles are typically studied from
crushed whole beetles or from external beetle surfaces, and
the isolated bacteria might not have been inside mycangia.
In this work, we targeted bacteria specifically within beetle
mycangia. This often large organ [9] is the functional pivot
of the ambrosia symbiosis [5]. Our current understanding
is that mycangia are the products of millions of years of
mutualistic coevolution between the beetle and fungal
symbionts. The mycangium provides an environment in
which exposure to UV light, abrasion, and tree defensive
chemicals are reduced, and where symbionts are provided
nutrients [10]. At the same time, it also excludes most
fungi while supporting the few coevolved symbionts
[11]. This selectiveness may hypothetically also affect
bacteria. Bacteria are abundant and diverse on the body
surface and within galleries of ambrosia and bark beetles
[12—16], but whether they are also present within the
mycangium, or if the mycangium is kept bacteria-free,

has been only marginally explored [12]. It has been noted
that bacteria are present in the ambrosia beetle niche [17,
18], but their abundance, diversity, composition, and
transmission in mycangia have not been analyzed.

We used a high-throughput, culture-independent approach
to search for and, if present, identify prokaryotes directly from
the mycangia of five species of fungus-farming beetles. In
doing so, we addressed four questions:

1. Do ambrosia beetle mycangia, organs originally evolved
to host fungi, also contain a significant diversity of
bacteria?

2. Is there a “core microbiome” associated with ambrosia
beetle mycangia? One hypothesis is that mycangia of all
ambrosia beetles, regardless of species, may be domi-
nated by a suite of microbial members shared among
samples, the “taxonomic core microbiome” [19]. Alter-
natively, associations may vary among different beetle
species or individuals.

3. If bacteria are present in mycangia and their communities
vary among beetles, to what extent is the community
composition determined by the geographic origin of the
beetle, and to what extent is it the host beetle species? If
bacterial communities are more specific to localities than
to beetle species, they are likely facultative opportunists
from the environment. On the other hand, if bacteria in
mycangia display specificity to beetle species regardless
of locality, they are potentially symbionts transmitted
vertically across beetle generations.

4. If bacterial communities are specific to beetle species,
are they also more similar between closely related bee-
tles then between unrelated beetles? Congruence
between bacterial community similarity and beetle phy-
logeny is expected if bacteria are exclusively transmit-
ted vertically within beetle species and families.

By sampling multiple species from nine localities
from around the world (not all species were collected
everywhere), we are not only assembling the broadest
sample of ambrosia beetle symbionts ever collected but
also creating a baseline dataset for further studies on
global host-symbiont dynamics. This is important for
highly invasive groups such as the ambrosia beetles [3].
Representatives of this symbiotic complex are usually
not economically important in their native regions but
can be devastating in invaded regions [3, 20]. It has
not yet been tested whether the increased impact is
caused by the change of beetle behavior in the invaded
regions, or by acquisition of new symbionts (whether
fungal or bacterial). By analyzing several species across
their global distribution, we are implicitly testing a key
assumption of the latter hypothesis: Is there evidence
for acquisitions of new symbionts in newly colonized
regions?
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Methods

To assure sufficient statistical power of our tests, our sam-
pling included six species of fungus-farming beetles, each
represented by eight to 28 different individuals, from nine
localities around the world (for details, see Table 1). To
include phylogenetically diverse beetle representatives, we
included species from three clades of ambrosia beetles, each
with its own type of mycangium. The first type is a protho-
racic mycangium in Dendroctonus frontalis, which has a
paired tubular mycangium on the inside of prothoracic pleu-
ral plates; the mycangium opens near the procoxa [10].
Dendroctonus represents an independently evolved clade
of fungus-farming bark beetles. These beetles inhabit tree
phloem rather than xylem, and the adults feed primarily on
phloem. However, the larvae depend almost entirely on
coevolved fungal symbionts for nutrition, thus we include
it among ambrosia beetles in this study. The second type is a
mandibular mycangium, the ancestral and most widely dis-
tributed form of mycangium in the ambrosia beetle tribe
Xyleborini, and characteristic of the genus Xyleborus [21].
Xyleborini are one of the largest and most economically
important tribes of ambrosia beetles [3, 20]. The opening of
the mandibular mycangium is in the oral cavity. The third
type, representing a different clade within the Xyleborini, is
the mesonotal mycangium, a large internal organ with opening
between the pronotum and the elytral basis [7]. It appears to
have evolved only once within the Xyleborini and coincided
with a radiation of a successful clade with many genera,
including Xylosandrus [21].

Beetles were obtained either by rearing from colonized
logs [22] or from cup traps baited with ethanol. Beetles were
preserved in 95 % ethanol and stored at —80°C. To extract
bacteria from mycangia, we surface-cleaned each beetle by
vortexing in water and ethanol and excised the part of each
beetle that contained the mycangium. In Xyleborus spp., we
sliced off a part of the head between the frons and the joints
of mandibles. The taxonomic distinction between Xyleborus
ferrugineus and Xyleborus bispinatus is uncertain [23], thus
we treated representatives of the complex as one species. In
Xylosandrus, we excised the content of the mesonotal
mycangium. In Dendroctonus, we exposed both mycangia
on the inner sides of the thorax and squeezed the content out
with a sterile pin. The environmental control composed of
two galleries of Xylosandrus germanus were collected dur-
ing the same collecting event as the X. germanus beetles.
Surface of the gallery containing the fungal garden was
scraped into a vial and processed in the same way as the
beetle mycangia.

The extracted mycangium was added to 10 pL of Ex-n-
Amp™ extraction solution (Sigma-Aldrich), macerated with
a pestle, and lysed at 96°C for 10 min. The reaction was
deactivated with 10 uL of 3 % BSA; 1 uL of the clear
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supernatant was used in the polymerase chain reaction
(PCR). Amplicons were generated using a universal
bacterial/archeal primer pair 515 F and 806R (5'-
GTGCCAGCMGCCGCGGTAA-3" and 5'-GGAC
TACVSGGGTATCTAAT-3" [24]). The primer 515 F
was appended with a TC linker and a Roche 454 B
pyrosequencing adapter; the 806R primer was appended
with a 12-bp sample-specific barcode sequence, a CA
linker, and a Roche 454 A sequencing adapter. The
sample-specific, error-correcting barcode allowed for
pooling all amplicons into a single pyrosequencing
run. All samples were amplified in triplicated 25-uL
reactions using 5 Prime HotMaster polymerase mix (5
Prime, Inc.) under the following cycling conditions—
95°C, 1 min, 33x(95°C, 30 s; 50°C, 1 min; 72°C,
1 min). Amplicons were purified using the UltraClean
PCR Clean-up kit (MoBio). Concentration of each
amplicon was determined using the Quant-iT™ Pico-
Green® dsDNA kit (Invitrogen), and equimolar aliquots
of all samples were pooled. Pyrosequencing was carried
out on a Roche Genome Sequencer FLX system at
Engencore, University of South Carolina, USA.

The sequencing output was processed using the pack-
age QIIME [25]. All sequences are available upon re-
quest. The output was filtered to contain only sequences
with lengths >200 and <1,000 bp with an average quality
score >25 and no ambiguous characters. Sequences were
assigned to samples according to the 12-bp barcode.
Sequences that were >97 % similar were grouped into
phylotypes using the UCLUST method [25], and the
taxonomic identity of each phylotype was determined
using the RDP Classifier [26]. Phylotypes occurring
in >30 % samples that were unclassified by RDP were
identified individually in NCBI BLAST. To confirm the
genus identity of the three common Mycoplasma phylo-
types and to rule out possible misclassification in RDP
and BLAST, we performed a phylogenetic analysis of the
placement of our phylotypes in Mycoplasmataceac. We
downloaded 16 S sequences of identified strains of My-
coplasma spp. and representatives of other genera within
this family from NCBI-GenBank, aligned them with our
sequences using MUSCLE [27] (270 bp alignment), and
inferred a maximum likelihood phylogeny based on the
Tamura-Nei model in MEGAS [28].

For downstream analyses, a distance matrix was derived
using UNIFRAC [30] which takes into account a phyloge-
netic structure of the community. Representative sequences
from all operational taxonomic units were aligned with
MUSCLE [27], and the phylogenetic tree and unifrac dis-
tance matrix were produced in QIIME. In order to avoid
artifacts of PCR, sequencing, and sampling biases [31], we
do not use bacterial abundance (read counts) in our analy-
ses; instead, prevalence of a phylotype is calculated as the
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Table 1 Ambrosia beetles from which mycangia were dissected and bacterial DNA sequenced

My cangium Species Locality No. Sum of
beetles  sequence
count
Prothoracic USA, Arizona, Flagstaff 4 1857
(native)
_lf - Dendroctonus frontalis
USA, Florida, Lake 5 2062
’ﬂ Alfred (native)
Ghana, Ankasa (native) 5 2231
Guyana, Iwokrama 5 2021
(native)
Mandibular . Japan, Okinawa (native) 3 1182
Xyleborus affinis
Papua New Guinea, 3 1365
Madang (native)
” USA, Florida, Lake 4 766
Gl Alfred (native)
Xyleborus bispinatus- Ghana, Ankasa (native) 5 2139
Guyana, multiple loc. 2 635
ferrugineus (native)
Panama, Canal zone 3 289
(native)
Papua New Guinea, 1 847
Madang (native)
USA, Florida, Lake 7 4066
Alfred (native)
USA, S. Carolina, Myrtle 5 4114
Xyleborus glabratus Beach (invasive)
USA, Florida (invasive) 5 3411
Ghana (unclear) 5 0
Japan (native) 5 151
Xylosandrus Papua New Guinea 5 90
(unclear)
crassiusculus
Mesonotal USA, S. Carolina, Myrtle 9 1161
Beach (invasive)
- USA, Florida (invasive) 4 264
* Japan, Okinawa (native) 1 0
: USA, Carolinas, Myrtle 3 0
Xylosandrus germanus  Beach (invasive)
USA, Massachusetts, 5 0
Harvard Forest (invasive)
Ambient Xylosandrus germanus  Japan, Okinawa (native) 2 1191
gallery
Total 96 29842
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number of beetle samples yielding one or more reads. Like-
wise, sample similarities in multivariate analyses were not
weighted by abundance. Prior to the analysis, samples were
rarefied to 41 reads. Less-strict rarefaction levels were also
tested (122 and 330 reads per sample); they did not provide
greater explanatory power but resulted in exclusion of most
low-yield mesonotal samples. The structure of the bacterial
community was visualized using principal coordinates anal-
ysis based on the UniFrac distances.

To compare the effect of beetle species and locality on the
composition of bacterial communities, we performed a per-
mutational multivariate analysis of variance of pairwise
distances between samples (the Adonis function in the Veg-
an package in R [29]). The factors beetle species, locality,
and their interaction were considered fixed factors in the
model. Mycangium type was included as a stratifying vari-
able, such that permutations were constrained within
mycangium type (the significance of mycangium type was
not directly tested, as only one type was sufficiently repli-
cated). To examine pair-wise differences between beetle
species in their composition of bacterial communities, we
performed Tukey’s honestly significant difference (HSD)
post hoc tests on a model of bacterial community composi-
tion as a function of beetle species identity (using an anal-
ysis of multivariate homogeneity of group variances; data
were pooled across beetle locality and mycangium type).

To test whether related beetle species have more similar
bacterial communities than unrelated beetles, we tested the
congruence between a beetle phylogeny and a dendrogram
of similarity between bacterial communities summed within
species. The beetle phylogeny was derived from concate-
nated sequences of cytochrome-oxidase I mtDNA and 28 S
rDNA of each species from our previous datasets [32] and
from NCBI Genbank, using maximum likelihood with the
Tamura-Nei model of evolution in MEGA [28]. Records of
bacterial phylotypes were summed up within beetle species,
distance matrix obtained with unweighted UniFrac, and
summarized in a dendrogram using the UPGMA algorithm
in QIIME. Jack-knife support for nodes in the dendrogram
were derived from repeating this process on successively
rarefied matrices from 1,666 reads (the lowest read count,
Xylosandrus crassiusculus) to 833 reads (50 % of data) per
beetle species. The significance of congruence between the
two matrices was assessed using Mantel test in PopTools
[33] with 1,000 iterations. X. germanus was not included in
most tests, as it did not yield any bacterial reads.

Results

We successfully amplified bacterial 16 S in 66 out of the initial
96 beetles. In the total of 29,842 reads of sufficient quality, we
distinguished 1,546 bacterial phylotypes using a 97 %
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similarity threshold (see the complete dataset in the Electronic
supplementary material).

Several phylotypes occurred in many beetle species and
were broadly distributed geographically (Table 2). Several
phylotypes of Mycoplasma, Burkholderiales, and Pseudomo-
nadales were recovered from more than half of the amplified
samples. The genus Mycoplasma was represented by three
frequently encountered phylotypes, including the most wide-
spread phylotype (present in 75 % of samples). The place-
ment of the three phylotypes in Mycoplasma, as opposed to
placement in other Mycoplasmataceae more often reported
from insect hosts, was confirmed using a phylogenetic anal-
ysis of the bacterial family (Fig. 1). The second and third
most prevalent phylotypes belonged to unidentified Burkhol-
deriales (probably Comamonadaceae, no closer match was
available in RDP and BLAST) found in 69 % and 61 % of
beetles, respectively. The last two phylotypes present in more
than half of the samples were Pseudomonadales: one Acine-
tobacter and one unidentified Pseudomonadaceae (preva-
lence 56 % and 48 %, respectively). Several other
phylotypes were found in fewer species but still prevalent
within certain beetle species (Table 2). Particularly notable is
the uniform microbiota of Xyleborus glabratus, where four
bacterial phylotypes were shared by all beetle individuals and
the same phylotypes were infrequent or absent in other beetle
species.

The bacterial community as a whole differed strongly
among beetle species (Fig. 2; Fs47;=4.298, R*=0.26;
»<0.001) and less strongly but still significantly among
regions (F747=2.13, R*=0.18; p<0.001). The prokaryot-
ic communities of X. crassiusculus and X. glabratus are
significantly different from several other beetle species
(Tukey’s HSD post hoc test; Table 3). Similarities between
bacterial communities did not correspond to beetle phyloge-
netic relationships (Mantel test p=0.149, Fig. 3). Interestingly,
both species with mesonotal mycangia, X. crassiusculus and
X. germanus, repeatedly yielded very poor amplicons of bac-
terial 16 S (average numbers of reads, 60 and 0, respectively).
The two environmental samples from galleries of X. germanus
yielded a bacterial community as diverse as samples from
most mycangia, but the community was significantly different
from all mycangial communities.

Discussion

Although mycangia are usually considered to have evolved
to house and disperse the fungi on which ambrosia beetles
depend, they also host several regularly occurring bacterial
phylotypes. Representatives of Mycoplasma, Burkholder-
iales, and Pseudomonadales in particular are widespread in
mycangia of multiple beetle species from diverse parts of
the world. These appear to be true inhabitants of beetle



Mycangia of Ambrosia Beetles Host Communities of Bacteria 789
Table 2 Dominant phylotypes of bacterial communities in ambrosia beetle mycangia (higher taxon, order, and genus, where available)
Beetle Bacterial phylotypes present in over half of samples Prevalence
D. frontalis Betaproteobacteria; Burkholderiales 0.86
Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae 0.71
Mollicutes, Mycoplasma 320 0.71
Mollicutes, Mycoplasma 661 0.71
Gammaproteobacteria 0.57
X. affinis Mollicutes, Mycoplasma 320 0.79
Betaproteobacteria; Burkholderiales; Comamonadaceae 0.68
Mollicutes, Mycoplasma 1441 0.63
Betaproteobacteria; Burkholderiales 0.58
Gammaproteobacteria; Enterobacteriaceae 0.53
X. bispinatus—ferrugineus Betaproteobacteria; Burkholderiales; Comamonadaceae 0.88
Mollicutes, Mycoplasma 320 0.76
Betaproteobacteria; Burkholderiales 0.71
Gammaproteobacteria; Pseudomonadales; Acinetobacter 0.53
Mollicutes, Mycoplasma 661 0.53
X. glabratus Alphaproteobacteria; Rickettsiales; Rickettsia 1
Bacteroidetes; Sphingobacteriales; Sphingobacterium 1
Gammaproteobacteria; Pseudomonadales; Acinetobacter 1
Gammaproteobacteria; Xanthomonadales; Stenotrophomonas 1
Alphaproteobacteria; Caulobacterales; Caulobacter 0.9
Betaproteobacteria; Burkholderiales; Alcaligenaceae 0.9
Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae 0.8
Gammaproteobacteria; Xanthomonadales; Stenotrophomonas 0.8
Actinobacteria; Actinomycetales; Tsukamurella 0.7
Betaproteobacteria; Burkholderiales 0.7
Actinobacteria; Actinobacteria; Actinomycetales 0.6
BacteroidetesFlavobacteriales; Chryseobacterium 0.6
Bacteroidetes; Sphingobacteriales; Sphingobacterium 0.6
Bacteroidetes; Sphingobacteriales; Sphingobacterium 0.6
Betaproteobacteria; Burkholderiales; Achromobacter 0.6
Betaproteobacteria; Burkholderiales; Comamonadaceae 0.6
Betaproteobacteria; Burkholderiales; Delftia 0.6
Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae 0.6
Gammaproteobacteria; Pseudomonadales; Moraxellaceae 0.6
Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae 0.6
Mollicutes, Mycoplasma 320 0.6
X. crassiusculus Mollicutes, Mycoplasma 320 0.78
Betaproteobacteria; Burkholderiales 0.67
Gammaproteobacteria; Pseudomonadales; Acinetobacter 0.56
Gammaproteobacteria; Xanthomonadales; Stenotrophomonas 0.56
Mollicutes, Mycoplasma 1441 0.56
X. germanus mycangium No bacterial sequences amplified
X. germanus, fungal gardens from two galleries Alphaproteobacteria 1
Alphaproteobacteria; Rhizobiales 1
Alphaproteobacteria; Rhizobiales; Brucellaceae 1
Bacteroidetes; Sphingobacteriales; Mucilaginibacter 1
Bacteroidetes; Sphingobacteriales; Sphingobacterium 1
Bacteroidetes; Sphingobacteriales; Sphingobacterium 1
Betaproteobacteria; Burkholderiales; Alcaligenaceae 1
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Table 2 (continued)

Beetle

Bacterial phylotypes present in over half of samples

Prevalence

Betaproteobacteria; Burkholderiales; Herbaspirillum
Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae
Gammaproteobacteria; Xanthomonadales; Dyella
Proteobacteria

Only phylotypes sequenced from over half of samples of the respective species are listed. Prevalence: Proportion of samples where the phylotype
was detected. Note the significantly different composition of the gallery sample

mycangia, rather than environmental or laboratory contam-
inants: The two control samples of fungus gardens sur-
rounding the beetles were dominated by completely
different phylotypes; for example, no Mycoplasma was
present.

The two most common groups of associates of ambrosia
beetles have never (Mycoplasma) or only rarely (Comamona-
daceae) been recovered from insect hosts. This is the first
record of Mycoplasma spp. as stable associates of insects.
Our discovery is at odds with the definition of the genus as
parasites of vertebrates [34] and raises questions about the
broader biology of the group. The confamilial genus Entomo-
plasma has been isolated from insects, but the phylotypes
from ambrosia beetles do not fall into this clade (Fig. 3).
Importantly, the Mycoplasma spp. from ambrosia beetles are
also not a monophyletic clade, suggesting that several Myco-
plasma clades colonized ambrosia beetles independently.

gi|219846148 Acholeplasma pleciae
7681185718180 Mycoplasma suis
Mycangial Mycoplasma 49
291 1gi| 2623777 Eperythrozoon wenyonii
gi 307574620 Mycoplasma ovis

8i| 109676294 Mycoplasma wenyonii
Mycangial Mycoplasma 340

Mycangial Mycoplasma 251
gi|343198555 Entomoplasma melaleucae strain M1
gi|34396098 Entomoplasma melaleucae

100

8133304543 Mesoplasma corruscae
98181|343198558 Mesoplasma seiffertii strain ATCC 49495
gi|33860311 Mesoplasma seiffertii

gi| 26891795 Entomoplasma luminosum

55|

8i|24417778 Entomoplasma lucivorax
gi|26324276 Entomoplasma somnilux
— 8i 3982594 Entomoplasma freundtii

5%
Figure 1 The three most widespread Mycoplasmataceae from ambro-
sia beetle mycangia are more closely related to Mycoplasma spp. from
vertebrates than to confamilial genera more often reported from inver-
tebrates. They are also not monophyletic, which suggests repeated
colonization of ambrosia beetles by this group of bacteria. Maximum
likelihood phylogeny was reconstructed in MEGA [28] based on the
Tamura-Nei model; numbers at nodes represent bootstrap support.
Sequences of identified Mycoplasmataceac were obtained from
NCBI-Genbank. The analysis is strictly for taxonomic purposes and
did not attempt to reconstruct the actual evolution of the clade
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Reports of Comamonadaceae from bodies of insects are
rare. Several strains have been isolated from insects but not
from groups relevant to wood-boring beetles [35-37]. Pseu-
domonadaceae are reported more commonly. The most rele-
vant is a record of several phylotypes of Acinetobacter in the
gut of the bark beetle Dendrocotnus valens [38]. The 16 S
sequence of one phylotype corresponds to the Acinetobacter
phylotype detected in our samples as the fourth most wide-
spread phylotype (only 1.5 % divergent; other reported strains
are not similar). Burkholderiaceae have been previously iso-
lated from crushed whole bodies of another Dendroctonus, D.
valens [15], and Pseudomonadaceae from Dendroctonus pon-
derosae [14], but, in both cases, the isolates represented dif-
ferent 16 S phylotypes than those reported here.

Since beetle species is a stronger predictor for the bacterial
community composition than locality, we suggest that more
bacterial phylotypes in beetle mycangia are vertically

0.4 T T T T T

X. bispinatus

/ferrugineus
03-

X. affinis
02r - 4 X glabratus

1 Xs. crassiusculus

01F -
B Xs, germanus
(gallery)
0.0 ¥ D. frontalis

1 1 L

L 1
=03 =0.2 =0.1 0.0 0.1 0.2 03 0.4

=03

Figure 2 Principal coordinates analysis (PCoA) of bacterial assemb-
lages from ambrosia beetle mycangia shows the significant specificity
of bacterial community composition to certain beetle species. Clustered
are samples from X. glabratus, X. crassiusculus, D. frontalis, and
samples from the two galleries of X. germanus. Not clustered are the
widely dispersed samples from X. affinis and X. bispinatus/ferrugineus.
First two axes are shown, explaining 9.04 % and 7.41 % of variation.
The PCoA is based on UniFrac distances unweighted by phylotype
abundances



Mycangia of Ambrosia Beetles Host Communities of Bacteria

791

Table 3 Pair-wise differences in bacterial community composition be-
tween beetle species resulting from post hoc analyses (Tukey’s HSD
following the analysis of multivariate homogeneity of group variances)

Comparison Difference  p value
(adjusted)
X. affinis—D. frontalis 0.009608 0.998436
X bispinatus/ferrugineus—D. frontalis ~ 0.002645 0.999997
X bispinatus/ferrugineus—X. affinis —0.00696  0.998571
X glabratus—D. frontalis —0.06972 0.081577
X. glabratus—X. affinis —0.07933 0.002512
X. glabratus—X. bispinatus/ —-0.07236 0.007324
ferrugineus
X crassiusculus—D. frontalis —0.06102 0.210561
X. crassiusculus—X. affinis —0.07062 0.019012
X. crassiusculus—X. bispinatus/ —0.06366 0.045119
ferrugineus
X crassiusculus—X. glabratus 0.008703 0.998985
X. germanus gallery-D. frontalis —0.25128 1.02E-06
X. germanus gallery—X. affinis —0.26088 5.11E-08
X. germanus gallery—X. bispinatus/ —0.25392 1.02E-07
ferrugineus
X. germanus gallery—X. glabratus —0.18156  0.000205
X. germanus gallery—X. —0.19026  0.000132

crassiusculus

p values are adjusted for multiple comparisons. In bold are significantly
different species pairs

transmitted than sampled from the environment. Given their
prevalence (Table 2) and their apparent absence outside of
beetle mycangia, several of the widespread phylotypes we
found have the potential to be stable associates of ambrosia
beetles. Based on our present knowledge, we cannot deter-
mine the ecological role of the bacterial associates. The role
could be anything from mutualists of the beetles to their
parasites, or even endosymbionts of the ambrosia fungi (i.e.,
Burkholderiales, [40]). In most cases, the beetles seem unlike-
ly to obligately depend on the bacteria, since even the most
prevalent bacterial phylotypes in the beetles did not tend to be
universally present within a host species. However, an excep-
tion in this regard may be the four species-specific associates
of X. glabratus recovered from all samples of this beetle

beetle phylogeny similarity of bacterial

communities
— Xyleborus affinis
0.05 . .
X. ferrugineus-bispinatus ———— 100
Xyleborus glabratus a5l [100

Xylosandrus crassiusculus

Dendroctonus frontalis

Figure 3 Similarity between bacterial communities in mycangia does
not correspond to the beetle phylogeny but distinguishes the conifer-
inhabiting D. frontalis. Numbers on the similarity dendrogram corre-
spond to jack-knife support for nodes; nodes with <50 % support were
collapsed

regardless of the locality. These phylotypes in particular de-
serve additional research to better understand their role in the
ambrosia symbiotic complex. It is also worth noting that
mycangia are complex organs and may not have been sampled
completely. We sampled the lumen of the mycangium, which
is where the main mass of symbionts resides, but we did not
attempt to explore the ultrastructure of its walls reported, for
example, in D. frontalis [41].

The conclusion that ambrosia beetles tend to retain species-
specific associates in different regions of the world is further
corroborated by the unique bacterial communities in the
mycangia of X. crassiusculus and X. glabratus (Table 3). Both
species are non-native invaders in North America, and their
bacterial communities differ significantly from those of native
xyleborine beetles. Particularly intriguing is X. glabratus, since
its entire non-native population likely originated from a single
recent introduction [20, 39]. The bacterial community within
its mycangia is unusually uniform (several phylotypes occur in
every sample) and dissimilar from bacterial communities in
native North American species of Xyleborus collected from the
same trees. This invasive beetle thus does not appear to have
adopted the bacteria of native beetles with which it is now
sympatric. An interesting question we cannot resolve here is
whether bacterial communities of X. glabratus mycangium
have changed relative to its ancestors in its native range.

We have repeatedly failed to amplify bacterial 16 S
rDNA from mesonotal mycangia of both species of the
genus Xylosandrus. We are unable to distinguish whether
this reflects a true absence of bacteria in the mycangia, or
the presence of strong PCR inhibitors. It is however not a
result of low quality of the samples. The two control sam-
ples from fungal gardens surrounding two different X. ger-
manus were collected directly from the gallery around the
beetles and processed identically, yet they yielded rich com-
munities of bacteria.

None of the common phylotypes detected here have been
previously reported from bark and ambrosia beetles. One
reason may be that the majority of previous studies used
culturing approaches. Here, we show that the most regular
associates belong to groups that are difficult or impossible to
culture, such as Mycoplasma or Rickettsia [34]. Lastly, we
also show that focus on specific organs, such as the mycan-
gium, allows refined inference of symbiotic associations,
and we recommend that future research on insect symbioses
takes insect anatomy into account.

To summarize our findings on the community ecology of
the mycangial microbiome, it appears that (1) bacterial
communities are more species-specific than locality-specific,
however, (2) the core microbiome is nevertheless shared
across beetle species, and (3) the similarity of bacterial com-
munities does not reflect phylogenetic relatedness of their host
beetles. This suggests that, although beetles tend to retain
distinct communities even in newly colonized regions and in
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the presence of other ambrosia beetle species, their mycangial
associates do experience horizontal cross-infection with a
large amount of stochasticity and do not conform to a scenario
of long-term co-cladogenesis.
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